
Lecture 11

The Pn or Spherical–Harmonics Approximation

1 Derivation of the Equations

We previously derived the diffusion equation by applying a Galerkin approximation based

on a linear angular trial space and weighting space. The Pn approximation represents a

generalization of this concept based on higher–order polynomial trial spaces. We begin this

discussion by considering the Legendre polynomials.

The Legendre polynomials, {Pn(x)}∞n=0, are defined over the interval [−1,+1] and form

an orthogonal basis set for the space of polynomials on that interval. They also represent

the associated Legendre functions of order zero, as discussed in Appendix C. Two of the

properties of the Legendre polynomials that we will use are as follows:

∫ +1

−1

Pn(µ) Pm(µ) dµ =
2

2n + 1
δn,m , (1)

and

µPn(µ) =
n + 1

2n + 1
Pn+1(µ) +

n

2n + 1
Pn−1(µ) , (2)

where

P0(µ) = 1 , (3)
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P1(µ) = µ . (4)

We begin the derivation of the Pn equations by considering the 1-D slab–geometry

transport equation with anisotropic scattering and an anisotropic distributed source. We

assume infinite-order Legendre expansions for both sources:

µ
∂ψ

∂x
+ σtψ =

∞∑
n=0

2n + 1

4π
(σnφn + qn)Pn(µ) , (5)

where the Legendre moments of the scattering cross-section are given by

σn = 2π

∫ +1

−1

σs(µ0)Pn(µ0) dµ0 , (6)

and the Legendre moments of the angular flux are given by

φn = 2π

∫ +1

−1

φ(µ)Pn(µ) dµ . (7)

Next we assume a trial space expansion of the following form:

ψ(x, µ) =
N∑

n=0

2� + 1

4π
φn(x)Pn(µ) , (8)

where N is odd. The reason for doing this is explained later. Equations for the expansion

coefficients, {φ�}N
�=0, can be obtained by substituting from Eq. (8) into Eq. (5), successively

multiplying that equation by P0(µ), P1(µ), . . . PN(µ), and integrating over all directions.

In particular, substituting from Eq. (8) into Eq. (5), we get

µ
∂

∂x

N∑
n=0

2n + 1

4π
φnPn(µ) + σt

N∑
n=0

2n + 1

4π
φnPn(µ) =
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N∑
n=0

2n + 1

4π
σnφnPn(µ) +

∞∑
n=0

2n + 1

4π
qnPn(µ) . (9)

Note that the scattering source expansion is truncated at n = N in Eq. (9) because Eq. (8)

implies that

φn = 0 , n > N. (10)

Substituting from Eq. (2) into Eq. (9), we get

∂

∂x

N∑
n=0

2n + 1

4π
φn

(
n + 1

2n + 1
Pn+1(µ) +

n

2n + 1
Pn−1(µ)

)
+

σt

N∑
n=0

2n + 1

4π
φnPn(µ) =

N∑
n=0

2n + 1

4π
σnφnPn(µ) +

∞∑
n=0

2n + 1

4π
qnPn(µ) . (11)

Multiplying Eq. (11) by Pk(µ), where 0 ≤ k ≤ N , integrating over all directions, and using

the orthogonality condition given in Eq. (1), we obtain

k

2k + 1

∂φk−1

∂x
+

k + 1

2k + 1

∂φk+1

∂x
+ (σt − σk)φk = qk k = 0, N. (12)

Evaluating Eq. (12), for k = 0, we get

∂φ1

∂x
+ (σt − σ0)φ0 + q0 . (13)

Taking Eqs. (3), (4), (6), and (7) into account, it follows that φ0 = φ, φ1 = J , and σ0 = σs.

Thus Eq. (13) is seen to be the balance equation:

∂J

∂x
+ σaφ = q0 . (14)
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Evaluating Eq. (12) for k = N and taking Eq. (11) into account, we get

N

2N + 1

∂φN−1

∂x
+ σtφN = 0 . (15)

Thus for the Pn approximation of degree N , Eq. (13) represents the equation for φ0, Eq. (12)

represents the equation for φk, with 0 < k < N , and Eq. (15) represents the equation for

φN . Each of these equations is exact except for Eq. (15). The exact equation for φN follows

from Eq. (12):

N

2N + 1

∂φN−1

∂x
+

N + 1

2k + 1

∂φN+1

∂x
+ (σt − σN)φN = qN , (16)

which contains φN+1. The system of exact moment equations through degree N is not closed

because there are N+2 unknowns and only N+1 equations. The closure, φN+1 = 0, follows

from Eq. (8). There are other possible closures leading to generalized Pn methods, but we

will not discuss them here.

2 Boundary Conditions

In general, the boundary conditions for the angular flux cannot be met exactly with a global

polynomial trial space. Thus the boundary conditions must be met approximately. This is

analogous to the case of diffusion theory. It follows from Eqs. (3), (4), and (8), that the P1

approximation is identical to the diffusion approximation for the steady-state case. Thus
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Marshak conditions can be used for the P1 equations (this is so for the time-dependent case

as well.) The central theme of the Marshak condition for diffusion theory is to preserve the

incoming current. This theme is generalized for the PN case to preservation of the even

Legendre moments of the incoming current. For instance, assuming an incident flux on the

left boundary denoted by fL(µ), the Marshak condition requires that

2π

∫ +1

−1

[
N∑

n=0

2� + 1

4π
φn(xL)Pn(µ)

]
µPk(µ) dµ =

2π

∫ +1

−1

fL(µ)µPk(µ) dµ , k = 0, 2, . . . , N − 1. (17)

Marshak vacuum conditions are obtained simply by setting the incident flux to zero in

Eq. (17). For the case of a reflective condition, one simply sets the odd Legendre moments

to zero. For instance, for a reflective condition at the left boundary, one requires that

φk(xL) = 0 , k = 1, 3, . . . , N. (18)

As in the case of the diffusion approximation, these are the only reflective conditions that

are physically acceptable. At a material interface, each Legendre flux moment must be

continuous across the interface. As in the case of reflection, these are the only interface

conditions that are physically acceptable.

The Marshak source and vacuum conditions, and the reflective conditions each provide

(N +1)/2 equations at a boundary. The total number of boundary equations is thus N +1.

This closes the system of equations since there are N + 1 first–order equations. We do not
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consider the PN approximation with N an even number because this forces an unnatural

asymmetry in the boundary conditions, i.e., one boundary must have one more condition

than the other.

Equation (17) clearly represents a straight-forward generalization of the Marshak con-

dition for the diffusion equation, and Eq. (18) similarly represents a straight-forward gener-

alization of the reflective condition for the diffusion equation. However, in the higher-order

case (N > 1), the Marshak condition cannot be interpreted in terms of a boundary extrap-

olation.

There are many types of source boundary conditions other than the Marshak conditions

that can be used with the Pn equations. However, we will not discuss them here since

those significantly more accurate than the Marshak conditions require knowledge of the

transport solution. Furthermore, the Pn solution converges to the transport solution as n

is increased with any valid boundary conditions. Thus the sensitivity of the solution to the

type of boundary conditions used is much less important for a high-order solution than for

a low-order solution.
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